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The influence of fluid elasticity on the onset of aperiodic or chaotic motion of an upper-convected
Maxwellian fluid is examined in the context of the Rayleigh-Bénard thermal convection problem. A
truncated Fourier representation of the flow and temperature fields leads to a four-dimensional dynami-
cal system that constitutes a generalization of the classical Lorenz system for Newtonian fluids. It is
found that, to the order of the present truncation and above a critical value of the Deborah number De*,
steady convection cannot set in, with the fluid becoming overstable instead. For De <De¢, and even
close to the Newtonian limit, the presence of fluid elasticity appears to alter significantly the cir-
cumstances leading to the onset of chaotic motion. Depending on the value of the Prandtl number,
chaos is found to set in through the quasiperiodic route or period doubling. In general, fluid elasticity
tends to destabilize the convective cell structure, precipitating the onset of chaos, at a Rayleigh number
that may be well below that corresponding to Newtonian fluids.

PACS number(s): 47.50.+d, 05.45.+b, 64.10.+h

I. INTRODUCTION

The simplicity of the Lorenz equations, and the rich se-
quence of flow phenomena exhibited by their solution,
have been the major contributing factors to their
widespread use as a model for examining the onset of
chaotic motion. Despite the severe truncation in the for-
mulation of these equations, some of the basic qualitative
elements at the onset of the steady thermal convection
and during its subsequent destabilization have been
recovered through the model. Yet, quite a few important
experimental phenomena observed in the case of low
molecular weight fluids (including supposedly ‘“Newtoni-
an” fluids) cannot be recovered by such an apparently
simple model. Whether such a discrepancy between
theory and experiment is solely due to the severity of
truncation, or the inadequacy of the Navier-Stokes-
Fourier equations altogether to describe the flow in the
transition regime, remains an open question.

Newton’s law of viscosity and Fourier’s law of heat are
based on linear irreversible thermodynamics [1]. They do
not account for any dependence of the transport
coefficients on shear rate or temperature gradient. Such a
limitation is not so severe as long as one is interested in
flows close to equilibrium. For flows far from equilibri-
um, such as in the transition regime, nonlinear effects be-
come significant. These nonlinearities manifest them-
selves in the form of shear thinning, for shear rate depen-
dent viscosity, or in the form of normal stresses leading
to the so-called Weissenberg rod-climbing effect. Such
nonlinear effects must then somehow be accounted for in
the constitutive model if an accurate description in the
transition regime is to be achieved. In this paper, we
focus our attention on the influence of fluid elasticity or
normal stresses on the stability of the two-dimensional
cellular structure and onset of chaos during thermal con-
vection.
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If normal stresses manifest themselves in fluids with
significant relaxation time, then viscoelastic behavior
should not be regarded as exclusive to polymeric liquids.
Rarefied gases and supercooled monatomic liquids are
just examples of fluids that exhibit non-negligible elastic
behavior under normal conditions of flow [2-4]. The
kinetic theory foundation of constitutive models for
monatomic dilute (dense) Lennard-Jones fluids, based on
the (generalized) Boltzmann equation, clearly shows the
viscoelastic character of such fluids [5-7]. The major
distinction in constitutive behavior between monatomic
fluids and polyatomic liquids appears to lie in the form of
the transport coefficients of viscosity and normal stress
[8]. More generally, all fluids possess some degree of elas-
ticity. Fluid elasticity was estimated by Derjaguin et al.
[9] through the resonance technique for low-viscosity
liquids such as water, cyclohexane, hexadecane, and dibu-
tylphalate. These liquids were found to possess a shear
elasticity of about 10® dyn/cm? at a frequency of shear
oscillations of about 73.5 kHz, that is, at a frequency 6—7
orders of magnitude lower than what is usually believed.
Earlier prediction and measurements by Joseph and co-
workers [10-12] of the shear-wave speeds and elastic
moduli of several supposedly “Newtonian” liquids also
indicate that such liquids do possess a non-negligible de-
gree of elasticity. In addition to this intrinsic elastic
property of fluids under normal conditions of flow, it is
well established that fluid elasticity or normal stresses
tend to become rather pronounced under conditions of
high deformation rate, heat, and/or diffusion fluxes.

Khayat and Eu [13] examined in detail the influence of
normal stresses and thermoviscous dissipative coupling
on the Taylor-Couette flow of Lennard-Jones fluids. The
viscoelastic behavior of such fluids is dictated by the so-
called generalized hydrodynamic equations for stress and
heat flux. These equations are derived on the basis of the
modified moment method for the solution of the (general-
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ized) Boltzmann equation for dilute (dense) monatomic
fluids [7], and lead to flow and temperature fields similar
to those obtained by the Navier-Stokes-Fourier equations
in the limit of small thermodynamic gradients. Numeri-
cal calculations using these apparently laminar equations
show that, by properly accounting for normal stresses in
the constitutive equations, one can predict the sudden
drop in drag coefficient as the Reynolds number reaches a
critical value [13(c)]. The flow behavior was also found to
approach that of an ideal fluid as the Reynolds number
was further increased, while normal stresses become in-
creasingly dominant. These findings seem to suggest that
such elastic or normal stress effects for any fluid are
bound to become significant under extreme flow condi-
tions, particularly in the transition and turbulent regimes.
What is then the influence of fluid “elasticity” on the spa-
tiotemporal structure of the flow as it evolves towards the
turbulent regime?

To examine this question, Khayat [14] developed a
four-dimensional dynamical system for the thermal con-
vection of strongly elastic flows of the Oldroyd-B type.
Such a system constitutes a generalization of the Lorenz
equations [15] to include viscoelastic fluids. The critical
Rayleigh number at the onset of the convective cellular
structure was found to be the same as for Newtonian
fluids. This is a direct consequence of the fact that the
nonlinear terms (at least to the degree of truncation
adopted) are the same as those in the Lorenz equations;
no convective or upper-convective nonlinear terms sur-
vive in the constitutive equations. The conductive state
thus loses its stability to the two steady convective
branches C, and C,, say, through a supercritical bifurca-
tion similarly to Newtonian fluids. The stability of the
conductive state near the onset of the convective
branches was later examined [16] by applying the center
manifold theorem [17]. The two convective branches lose
their stability in turn through a Hopf bifurcation as the
Rayleigh number exceeds a value which, this time, de-
pends strongly on fluid elasticity and retardation. It was
also observed that fluid elasticity tends to precipitate the
onset of chaotic motion, while fluid retardation tends to
delay it. Above a critical value for the Deborah number,
which for an upper-convected Maxwellian (UCM) fluid is
given by De‘=(1+Pr !)(#2+4¢%) !, Pr being and
Prandtl number and g the wave number, the flow
behavior departs significantly from that of a Newtonian
fluid. All three fixed branches remain unstable in the su-
percritical range for any value of the Rayleigh number.
Thus, for De > De€, no steady convection can set in, and
the cellular structure is always periodic in time (overst-
able), with the corresponding Fourier spectrum showing
sharp peaks at the fundamental frequency and its har-
monics that tend to increase in number as De increases.

In this paper, we focus our attention on the influence
of fluid elasticity on the destabilization of steady convec-
tion and onset of chaotic motion for weakly elastic fluids
(De < Def). More particularly, we examine the role elas-
ticity may play in the birth and stability of the Hopf bi-
furcation at the postcritical Rayleigh number Ra, >Ra,,
just before chaos sets in. To this end, a multiple-scales
perturbation analysis is carried out around Ra, in order

to determine the stability of the periodic orbit. It is a
well established fact that in the case of the Lorenz equa-
tions [18], the solution is not attracted toward a periodic
limit cycle. Instead, it undergoes a homoclinic bifurca-
tion and then becomes chaotic as Ra is further increased.
Some special attention is also paid to the influence of the
Prandtl number. Rather than adopting a sophisticated
viscoelastic constitutive model, be it kinetic theory based
[8,19] or phenomenological [20], we will assume that the
fluid under investigation obeys the less realistic Maxwell
equation. The choice of a suitable constitutive model is
not crucial at this stage, since our initial objective is to
bring out the fundamental role elasticity can play in the
transition regime.

II. PROBLEM FORMULATION

The derivation of the four-dimensional dynamical sys-
tem for a Maxwellian fluid is discussed in this section.
Since a detailed derivation as well as the coherence of the
model have been given elsewhere for an Oldroyd-B fluid
[14], only the main points are discussed here. Note that
Maxwell’s equation is obtained from the Oldroyd-B equa-
tion by setting fluid retardation to zero. First, some of the
basic assumptions involved in the general governing (con-
servation and constitutive) equations and boundary con-
ditions for the thermal convection of a viscoelastic fluid
are briefly reviewed. A truncated Fourier representation
of the general solution is then introduced, leading to the
four-dimensional system, which constitutes a generaliza-
tion of Lorenz model to include viscoelastic fluids.

A. Governing equations and boundary conditions

Consider a viscoelastic fluid placed horizontally be-
tween two flat plates separated by a distance D. The x
axis is taken along the plates lying halfway in between,
the z axis is in the direction perpendicular to the plates.
Let Ty and T+ 8T be the temperatures of the upper and
lower plates, respectively, with 87 being the temperature
difference. T, is taken as the reference temperature. In
the present work, the substances of main interest are as-
sumed to obey the following equation of state:

p*=po[1—ap(T*—T,)], (1)

where p* and p, are the densities at T* and T, respec-
tively, and a, is the coefficient of volumetric expansion.
If the Boussinesq approximation, which states that the
effect of compressibility is negligible everywhere in the
conservation equations except in the buoyancy term, is
assumed to hold, then the equations for conservation of
mass, momentum, and energy, for the departure from the
pure conductive state, read, respectively,

V.u=0 , (2)
pr! %%+u-Vu =—Vp—V-r+6k, 3)
a0 2

—aT+u-V6—V 6+Rau-k—RaPr Ecr:Vu , 4)
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where V is the two-dimensional gradient operator,
u(u,w) is the velocity vector, p is the hydrostatic pres-
sure, 7 is the deviatoric stress tensor. 8=(T*—T})/8T
is the departure from the steady-state temperature 7%,
and k is the unit vector along the z direction. Equations
(2)-(4) must be supplemented with a constitutive equa-
tion for 7. The constitutive equation for stress is taken to
correspond to an upper-convected Maxwellian fluid [20]:

or t _ -1

§+u-VT—Vu -r—7:Vu=—De™ (7+7v), (5)
where ¥y =Vu-+Vu' is the rate-of-strain tensor. The fol-
lowing dimensionless groups were introduced, namely the
Rayleigh number, Prandtl number, Eckert number, and
Deborah number:

_ 5TgaTD4 P Vo K2 Ak

Ra=—, Pr=—, Ec=—2, e=—
VoK K C,8TD D
(6)

with v, being the zero-shear-rate kinematic viscosity, A
the relaxation time, k=K /(p,C,) the thermometric con-
ductivity, K the thermal conductivity, C, the specific
heat at constant volume, and g the acceleration due to
gravity. Thus, De is a measure of fluid elasticity. The
characteristic time, length, velocity, and pressure were
taken to be D?/k, D, k/D, and vaK/DZ, respectively.
Appropriate boundary conditions must now be examined.
Since the fluid is confined between the planes z = —1
and z=+1, regardless of the nature of the two surfaces,
one must have
O0(x,z=—1,t)=0(x,z=+1,t)=0, 7)

2

w(x,z=—%,t)=w(x,z=+%,t)=0, (8)

since the temperature is fixed at the bounding planes, and
the normal velocity component is zero. There are two
remaining boundary condition which, however, depend
on the nature of the two bounding surfaces. It will be as-
sumed that the two planes are free surfaces on which the
tangential stress components are equal to zero. Thus,
T (X,2=%1,8)=0 . 9)
Since the problem is two dimensional, one may con-
veniently introduce a stream function ¥(x,z,¢) such that

u=—v,, w=i,, (10)

where a subscript comma denotes partial differentiation.
In this case, one may take the curl of Eq. (3), and elimi-
nate the pressure to obtain

Prfl(Alﬁ,t _¢,2A¢,x +¢,x A¢,Z )

ze,x - (Tzz T Txx ),xz _sz,xx +sz,zz ’ (1 1)
where A=092/3x2+92/3z% is the Laplacian operator.
Since RaPrEc=ga;D?/C,, and for most fluids of in-
terest a is of the order 1072 to 1074, the work term in
the heat transport equation (4) may be neglected, thus
leading to

9,t+d},x9,z—¢,ze,x:Ra¢,x+A9 . (12)

From Eq. (5) the stress tensor components are governed
by

Txx,t + ¢,x7-xx,z - ¢,z7-xx,x +2¢,xz7-xx + 2w,zz sz
=—De 1, —2¢,,), (13)

Topt T Ty =¥ Ty x = —De lTyy ’

Tzz,t +¢,x7—zz,z _¢,szz,x _zlp,xx sz _2¢,zx T2z
=—De 7, +2¢,,), (15

Txz,t +¢',x7-xz,z _¢,szz,x _¢,xx Tex t 1p,zz'rzz
:_De_1(7x2+¢',xx_¢,zz) . (16)

It is useful to note that the 7, component of the stress
tensor, governed by Eq. (14), is decoupled from the rest of
the equations and boundary conditions. Thus, the lack of
any boundary conditions forces 7,, to be independent of
x and z, except through its coupling with 3. Thus, the
evolution of 7,, can be determined separately from the
rest of the flow and temperature fields, and therefore will

not be considered any further.

B. The four-dimensional dynamical system

The solution to Egs. (11)—(16), subject to boundary
conditions (7)-(9), may be represented by an infinite
Fourier series in x and z, with the series coefficients de-
pending on time alone. One then ends up with an infinite
set of ordinary differential equations. In practice, howev-
er, one seeks a way to truncate the Fourier series to ob-
tain a finite-dimensional system of ordinary differential
equations. The truncation cannot be arbitrary since the
truncated form of the solution must still satisfy the im-
posed boundary conditions. In the present work, an ad-
ditional restriction imposes itself naturally on the trun-
cated solution: the resulting dynamical system must
reduce to the Lorenz equations in the limit De—0. In a
manner similar to the case of a Newtonian fluid [15,21],
only one term in the Fourier representation for the
stream function is kept:

Y(x,z,t)=1,(t)sin(gx)cos(7z) , (17)

which satisfies boundary conditions (8). Here 27 /q is the
(imposed) period in the x direction. Since the stress ten-
sor is coupled to the velocity field through Egs.
(13)—(16), the same periodicity in x may be imposed, thus

Ty (X,2,8) =E(t)cos(gx)sin(7z) , (18)
T,,(x,2,8)=E&(t)cos(gx)sin(7z) , (19)
T, (X,2,t)=0(t)sin(gx)cos(7z) . (20)

Note that these expressions, together with (17), satisfy
boundary conditions (9). A similar argument holds for
the temperature. However, as in the case of Newtonian
fluid, more than one term is needed in the temperature
expression if some part of the nonlinearities in Egs.
(11)—(16) is to be retained. Here, again, following Lorenz
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[15], one may set
6(x,z,t)=0,(t)cos(gx)cos(mz )+ 6,(¢t)sin(27z) . (21)

Projecting Egs. (11)-(16) onto modes (17)-(21), one ob-
tains the following four-dimensional system [14]:

X=Pr(Y—P), (22)
Y=—XZ+X-Y, (23)
Z=XY—-bZ , (24)
P=8X~—P), (25)
where a dot denotes the rd /dt operator,
=T =_1 -4

De ’ m+q?’ T’
Xx=TITy | y=TLTg  Z-TIT,

v b v b v 2

=_97_ — 2_
P 7T‘/E[a(é,’ E)+(a*—1)o].

As in the case of the Lorenz equations, it is convenient to
introduce the following parameters:

2
- 49 __4
=— 23Ra, b= 5
(m*+q*) a*+1

In the limit De—0, that is, in the case of a Newtonian
fluid, Eqgs. (22)-(25) reduce to the Lorenz equations [15]

X=Pr(Y—X), Y=—XZ+rX—-Y, Z=XY—bZ .
27)

r (26)

It is important to observe that the nonlinear terms in the
viscoelastic Egs. (22)—(25) are exactly the same as those
in the Newtonian Egs. (27); they stem only from the con-
vective terms in the energy equation. Indeed, there are
no nonlinearities retained from the convective or upper
convective terms in the stress equations, at least to the
order of truncation taken in the present work.

III. THE STEADY-STATE SOLUTIONS
AND THEIR STABILITY

Before attempting the numerical solution of Egs. (22)
and (25), it would be useful to examine the local stability
of the equilibrium points in order to unravel some of the
fundamental difference between Newtonian and viscoelas-
tic fluids. Although the truncated constitutive equation
(25) is equivalent to the linear Maxwell equation, it is ex-
pected to alter the spatiotemporal structure and stability
picture. For a very small value of De, one expects the
behavior of the flow in phase space to be similar in both
the Newtonian and viscoelastic regimes, at least around
the purely conductive state. As De increases, the stabili-
ty picture changes for viscoelastic fluids, giving rise to a
stable periodic solution.

A. Steady-state solutions

In the absence of additional nonlinearity from the con-
stitutive equations, the steady-state solutions for velocity

and temperature are the same as those of the Lorenz
equations. There is one trivial solution, that is, the origin
in phase space:

Xg=Ys=Z;=Ps=0, (28)

which corresponds to pure heat conduction. As r exceeds
unity, two additional fixed branches C; and C, emerge,
corresponding to the onset of (two-dimensional) convec-
tive rolls in opposite directions:

Xs=Ys==%[b(r—D]'"?, Zg=r—1,

(29)
Pg=+[b(r—1)]"2.

Thus, the critical value of the Rayleigh number at the on-
set of steady convection does not depend on De. In other
words, at least on the basis of the present model, the criti-
cal Rayleigh number and wave number at the onset of the
cellular structure for a viscoelastic fluid are the same as
those for a Newtonian fluid. This important conclusion
could have been anticipated earlier by noting that, under
steady-state conditions, Eqgs. (22)-(25) reduce to the
steady Lorenz equations. This result is in agreement with
the experiments of Liang and Acrivos [22]. The expres-
sion for the critical value of the Rayleigh number is then
given by
_ ( 17_2 + q 2 )3

c q2 ’
so that the wave number for the minimum value of Ra, is
equal to g, =m/V'2. In the calculations below, the value
of g is taken equal to g.. The stability of the conductive
state was examined previously in some detail [14,16]. In
the present work, we focus our attention on the existence
and stability of the Hopf bifurcation when C; and C, lose
their stability before chaotic motion eventually sets in.
For completeness, the general stability picture is summa-
rized first.

Ra (30)

B. Stability of the steady-state solutions

The results based on linear stability analysis of Egs.
(22)-(25) are summarized in Fig. 1. Linear stability
analysis around the origin leads to an obvious charac-
teristic value: A= —b, while the remaining three roots
are governed by

A+(8+ 1A+ (Pré+8—r Pr)A+Prd(1—r)=0 . (31)

In the limit of a Newtonian fluid, that is, as De—0, Eq.
(31) reduces to

A2+ (Pr+1A+Pr(1—r)=0. (32)

The roots of this equation are always real since » >0, and
one of them becomes positive as r exceeds 1. That is
when the origin loses its stability to the two other
steady-state solutions coinciding with the onset of the
(two-dimensional) convection rolls. In the case of a
viscoelastic fluid and at small De value, Eq. (31) leads to a
similar exchange of stability which takes place at r =1
when a supercritical bifurcation emerges as shown in Fig.
1(a). The conductive state, which is stable for » < 1, loses
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De < Dec

(a)

FIG. 1. Bifurcation diagram around the conductive state for
(a) weakly elastic flow (De <De°) and (b) strongly elastic flow
(De > De°). Stable and unstable solution branches are indicated
by solid and dashed lines, respectively. Note the birth of a pre-
critical Hopf bifurcation (at r =r% < 1) when De > De’. In this
case, no steady convection sets in.

its stability to the two convective branches as r exceeds
unity. The emergence of the branches C; and C, corre-
sponds to the onset of steady convection. Thus, for r > 1,
the solution evolves to either one of the branches depend-
ing on the initial conditions. As r increases and reaches a
critical value ry(De,Pr)>1, the two convective states
lose their stability through a Hopf bifurcation. In this
case, the solution tends to ‘“‘hover” from around one
branch to the other passing through the origin, and even-
tually remains locked (in phase space) on what is now
well established as the strange attractor. This situation
persists as long as De remains smaller than a critical
value, namely, De‘=7(Pr+1)/Pr.

As De exceeds Def, stability analysis around r =1
shows that both the origin and the two convective
branches are unstable [16] as shown in Fig. 1(b). In the
range r < 1, a Hopf bifurcation emerges at r =r(De,Pr),
corresponding to the onset of overstability or periodic
solution. The origin was found to be stable for » <r# and
unstable for r >r#¥. Thus, the solution would evolve to-
wards the conductive state in the former case, while it
ends up on a periodic orbit in the latter. The stability of
the periodic orbit was later confirmed by applying the
center manifold theorem around r =r¥ <1 [23]. Note
that although the birth on the Hopf bifurcation occurs at
a precritical » value (r¥ < 1), a limit cycle usually exists
for the solution at r >1. Thus, when De> De¢, the
branches C, and C, are always unstable, and the solution
settles into periodic orbit even after » has exceeded unity.
Thus, for strongly elastic fluids (De > De¢), steady con-
vection cannot set in when the Rayleigh number exceeds
Ra,.. This is of course in sharp contrast to the case of
weakly elastic fluids (De < De°) where steady convection
always sets in for » > 1, with C, and C, losing their sta-
bility through a Hopf bifurcation at » =ry. One is then

confronted with the question regarding the nature of the
solution for r>rg; more particularly, what role does
fluid elasticity play after the two convective branches lose
their stability? It is precisely to this question that we
now turn.

IV. EXISTENCE AND STABILITY OF A HOPF
BIFURCATION FOR WEAKLY ELASTIC FLUIDS

We now examine the conditions for the emergence and
stability of a postcritical Hopf bifurcation (at r =ry > 1)
when De <De‘. To this end, multiple-scales perturbation
analysis is carried out for an r value slightly above ry.
Linear stability analysis around the fixed branches (29)
leads to the following characteristic equation for the ei-
genvalues:

ALM)=A*+(b +1+8)A>+[br —Pr+8(Pr+b+1)]A?
+[b Pr(r —2)+8b(Pr+r)]A+28 Pr(r —1)=0 .
(33)

In the limit De—0, one recovers the characteristic equa-
tion for the Lorenz system:

A+ (Pr+b +1DA2+b(Pr+r)A+2Prb(r —1)=0. (34)

Thus, for a Newtonian fluid, the two nontrivial fixed
points C, and C, are sinks for
re(1,Pr(Pr+b+3)Pr—b—1)"!). At r=1, a pitch-
fork bifurcation occurs, while the origin is a saddle point
with a one-dimensional unstable manifold. A Hopf bifur-
cation occurs when (34) possesses a pair of purely imagi-
nary roots. In this case, the value r)*' of » when this
occurs and the initial (dimensionless) frequency wyey; are

given by

, ke =2bPr—0Itl_ 35

Newt _p Prtbd +1
Pr—b+1

"H Pr—b —1

For r>rj*™, C, and C, are saddles with two-
dimensional unstable manifolds. Thus, for r>r}l}le“’t all
three fixed points are unstable, but an attracting region in
phase space still exists which, for Pr=10, b =-§-, and
r=28, is known as the Lorentz attractor. At low De
value, one expects a similar (Hopf) bifurcation to emerge
in the case of viscoelastic fluids. In the case of the
Lorenz system, however, the periodic orbit coinciding
with the Hopf bifurcation is found numerically to be un-
stable. The question we are about to examine is whether
fluid elasticity has any stabilizing effect in forcing the
phase trajectory to become locked onto a limit cycle as a
result of the Hopf bifurcation. But let us first look at the
general conditions for existence of a postcritical Hopf bi-
furcation.

A. Existence of a postcritical Hopf bifurcation

The existence of a postcritical Hopf bifurcation is ex-
amined only when De < De¢, since otherwise steady con-
vection does not exist. In order to find at what value 7y
of r this occurs, we set A=iw in Eq. (33) and equate real
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and imaginary parts to zero, to obtain the following equa-
tion for ry;:

28 Pr(ry—1)(b +8+1)2+b[(Pr+8)ry +Pr(6—2)

—b[(Pr+8)ry +Pr(6—2)][bry —Pr+8(b +Pr+1)]

X(b+8+1)=0, (36a)
with the expression for o given by
(Pr+8)ry +Pr(6—2) (Pr+1)
2 — C—m o 7
@ b+5+1 » De<De Pr
(36b)

The inequality in (36b) insures that a postcritical Hopf bi-
furcation does not exist for strongly elastic flows
(De>De€). In the limit De—0, one recovers the
Newtonian expressions (35). Equation (36a) is a second-
order equation in ry5. Note that ry(De=De)=1. Fig-
ure 2 shows the (r; —De) curves for moderate values of
the Prandtl number. The end of the curves coincides
with (ry=1, De=De). For Pr=4.5 and 10, rg de-
creases monotonically with De. Thus, for such
moderately small values of the Prandtl number, fluid elas-
ticity tends to precipitate the destabilization of steady
convection. For Pr=25 and 35, there is a maximum that
appears at a relatively small De value. In this case, a low
level of fluid elasticity tends to stabilize steady convection
by raising the value of ry. In general, a leveling of the
curve, however, begins to occur at relatively small De
value. Thus, a relatively small amount of fluid elasticity
tends to decrease dramatically the value of ry, to a value
close to unity. We will examine the implications of the
results in Fig. 2 later when numerical solutions are
presented.

B. Stability of the Hopf bifurcation

We have just established that a Hopf bifurcation comes
into existence at r=ry. Thus, from linear stability
analysis, we are led to believe that at » =ry, a limit cycle
of frequency » will be formed when the numerical solu-
tion is performed. Such a limit cycle is, however, not al-
ways found. This is indeed the case of the solution of the
Lorenz equations which does not display a periodic orbit
as predicted by expressions (35). Whether this situation
is altered under the influence of fluid elasticity can only
be established by examining the influence of the nonlinear
terms in the system (22)-(25). We are particularly in-
terested in the flow as r is increased slightly above 7.
We now carry out a multiple-scales perturbation analysis
similar to that of Newell and Whitehead [24] and set
r=rg(1+¢?), where ¢ is a small ordering parameter.

Let us focus the analysis on the perturbation from the
fixed branch C;. If we denote the departure from C, by
[see Egs. (29)]

V=( U, V, W,Q)t=(X, Y,Z,P)t—(Xs, YS’ZS’PS )t ) (37)

then upon substituting (37) into (22)-(25) and keeping
terms to O (£?), we have

U 0 o o oollu
v |—uw| by |0 0 1o0||¥
Llw|=| uv |7%2x, |-1 -1 00| |w
0 0 o o0 o0ol|o
+0(e%), (38)

where we have introduced

Pr =4.5
= 10.0
25.0
35.0

FIG. 2. Onset of postcritical
Hopf bifurcation at r =rg. The
(rg—De) curves are shown as a
function of the Prandtl number.

De/t
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— —P 0 P
dt ! ’ v A(T) VH imt+A*(T) V}; —iwt
0o e e N
-1 % +1 Xy 0 Wu W
L= d s Qn (04
—-X —Xy; —+b 0
H B dt where
-8 0 0 7‘;; +38 Un 1
- —1)1172 =
We now introduce another time scale T =¢%t of O(g?), Oy b+iw
and write )
S+iw
i i +g2 Gl + 3 —_ n
" TS r 0(’), V=3 €"V,_;. (39 and 4(T)is a slowly varying function of 7. Note that Vo
n=1 is the form of the limit cycle to O (¢), and in order for the
limit cycle to be detected by the numerical solution, the
Thus, to O (g), we have real part of 4 (T) must not grow indefinitely with respect
LV,=0, 40) to T. The conditions for growth or decay can be deter-

mined through an appropriately derived equation for A4

where V;, may be expressed in terms of the eigenvectors
(and their complex conjugates) of the Jacobian matrix
arising from the linearization of (22)-(25) and C,:

by examining higher-order terms.
To O(e?), Eq. (38) leads to the following equation for
V, [after substitution of (41)]:

0 0 0
—Wy—Wg —Wh —Wh
LV,=|4] VitV L B e b Vs e "er 42)
0 o 0
which can be easily solved to give
a B
vi=l4f? W,,a+W;; +47 X,;l[B—(l-fZiw)x—WH e +o.c. 43)
_T 5
a 8+tiow
where
5 Pr . *
——A(o)[b(WH+WH)+XH(VH+VH)] ;
,3:—A?ZI;;)[(b+2ia))WH+XHVH](6+2iw), =—§7 S%E;—Cuﬂim :

A being defined by Eq. (33). Note that the solution to (41) was obtained without leading to any constraint on 4. Such a
constraint is obtained when the next order in € is examined. Thus, to O (&%), we have

1 o o ool[Y 0
a4 |V . bry |0 0 1 0[[Vo —WoU,—UgW,
LVam=Sr (W ¢ 0%, |—1 —1 0 o |w, |1 | vou,+U,Y, (44)
O 0 0 00f]g, 0

Upon substitution of (41) and (43) into the right hand side of (44), one observes the emergence of secular terms as far as
the determination of V, is concerned. The solvability condition for Eq. (44), after extensive algebraic manipulation,
leads to the following constraint equation on A4 (7'):
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(Cl + VHC2+ WHC3 +QHC4)'d—A
dT
bry
=E[(1+ Viles—Wyey 14

(45)
B—(1+2iw)x—2Wy—Wg

A% 4,
X, 42|

+ |es[(Vy+Da+x+BVE]—c, |Wya+

+WiB

where the following complex valued quantities were introduced:
c,=8bry—a*(b +8+1)+io(bry+b8+8—w?), c,=Pr[bd—o’+in(b+8)],
c3=—XyuPr(d+iw), c,=Prlw*—bry—ion(b+1)].

Thus, if Eq. (45) is satisfied, no secularity appears in Eq. (44), at least through terms of order e3. We represent 4 (T) in
polar form: A4 (T)=R (T)e'®T, where R and 6 are real. What is of particular interest here is the behavior of the am-
plitude R. Substituting into (45) and equating real and imaginary parts, leads finally to a decoupled equation for R

alone. Omitting details, this equation may be written in the form

4R _ 3
7 —@R+VYR?,

where @ and V¥ are real quantities given by
bry[(1+Vy)ey; —Wye
d=Re ul HIC3 HC2 ] ,
ZXH(C1+VHC2+WHC3+QHC4)

(46)

g | XLVt Dt x BV 1—es[ Wy Xya—2)+B—(1+ 20— Wi (1 —xyB)]
€ Xp(c,+ Vyer+ Wyes+0gcs)

and whose sign determines whether a limit cycle is bound
to be numerically observed or not. Given the complexity
of these expressions, an analytical assessment of their
value is practically impossible. We hence resort to nu-
merical representation of the ® and ¥ behavior.

Figures 3(a) and 3(b) display, respectively, the behavior
of ® and V¥ as a function of De for the same values of the
Prandtl number as in Fig. 2 (the curves corresponding to
Pr=35 are omitted for clarity; their presence do not gen-
erate any new insight). Figure 3(a) shows that the quanti-
ty @ remains positive for any value of De and Pr. Its
overall value, however, tends to decrease as Pr decreases.
Whether this tendency is maintained until ® becomes
negative for smaller Pr value remains to be established.
The ¥ curves are shown in Fig. 3(b). All curves indicate
a change in sign at some De value. Note that for the
range of De values when ¥ <0, the limit cycle is stable
and a periodic orbit is detected by the numerical solution
as we shall see below. For small De value, all curves show
that W is positive. This is typically the case of a Newtoni-
an fluid, for which no periodic orbit is detected. The
value of De at which there is a change in sign of ¥ ap-
pears to decrease as Pr increases. This tendency is main-
tained for higher Pr values (not shown), and eventually
(for roughly Pr> 50) ¥ remains negative for all values of
the Deborah number. This important observation clearly
indicates that, even for Newtonian fluids, periodic
behavior can emerge but cannot be detected by strictly
Newtonian (Lorenz) equations. For Pr=4.5 (and possibly

r

for smaller Pr values), ¥ becomes positive again reflecting
an absence of periodic motion.

V. NUMERICAL RESULTS

In the light of the stability picture established on the
basis of the analysis presented in the preceding section,
we now turn to the numerical solution of Egs. (22)—(25).
Our aim is to elucidate further on the influence of fluid
elasticity or normal stress on the conditions for onset of
chaotic motion for weakly elastic fluids (De <De®). For
completeness, we will briefly examine first the flow at a
very small Deborah number and Pr=10, which is essen-
tially that obtained from the Lorenz equations. The
effect of weak elasticity will then be examined for the
same Prandtl number. Given the important qualitative
difference initiated by raising the Prandtl number (see
Figs. 2 and 3), we will also examine the flow for Pr=25.

A. Close to the Newtonian limit (Pr= 10, De=0.001)

In the Newtonian limit, Egs. (22)-(25) cannot be
solved by simply setting De to zero, since this limit leads
to a singularity in the equations [25]. For this reason, the
value of De is set equal to 0.001. The stability of the
solution near the origin (in phase space) may be inferred
from Eq. (31), which indicates that for » <1, the origin is
stable. As r exceeds unity the origin loses its stability, and
the solution converges to either C; or C, depending on
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(b)

De/t

FIG. 3. Stability of the periodic orbit at the birth of the Hopf
bifurcation. The limit cycle is stable only if ® and ¥ are of op-
posite sign.

the initial conditions. Figure 4(a) shows the behavior for
r =10, with C; being the limit point. As r increases, the
solution undergoes a homonclinic bifurcation as shown in
Fig. 4(b) for r =14. At r=r}*"'~24.74, a Hopf bifurca-
tion emerges with a loss of stability of all three fixed
points. For a substantial range of r values beyond rj°™'
no stable periodic solution is detected numerically. The
reason can be seen from Eq. (46) and Figs. 3(a) and 3(b).
The figures show that for De=0.001 (Pr=10), both ®
and ¥ are positive. Thus, the nonlinear term in Eq. (46)
does not have any stabilizing influence on the limit cycle
(leading to a backward bifurcation). Figure 4(c) shows
the solution in phase space for » =28 as it is confined to
the Lorenz attractor. The effect of fluid elasticity is next
examined in comparison with the Newtonian picture just
summarized.

B. Quasiperiodicity and chaos (Pr=10, De=0.022)

We now examine the flow when the Deborah number
exceeds the critical value for the solution to become
periodic after the onset of the Hopf bifurcation. We fix
Pr=10 in order to compare the present flow with the
Newtonian flow above. In this case, Fig. 3 indicates that a
periodic orbit is bound to be detected numerically when
De>0.01. We thus fix the value at r; =3.65 with initial
(dimensionless) angular frequency w=4.747. The phase
portrait and power spectrum for r =3.9 are shown in
Fig. 5. The trajectory in the phase plane (X,Y) clearly
shows a periodic orbit. The fundamental frequency of
the limit cycle is shown in Fig. 5(b) of (dimensionless)
value equal to 0.68 compared to the value w/27=0.76
predicted by Eq. (36b). The difference is due to nonlinear
effects. These nonlinearities give rise to the distortion in
the periodic orbit and the additional harmonics in Fig.
5(b).

When r exceeds a certain critical value, the periodic or-
bit (around C,, say) begins to lose its stability. The trajec-
tory is attracted toward a periodic orbit (around C,) in a
manner similar to homoclinic bifurcation. Further in-
crease in r leads to complete instability of the two period-
ic orbits around C, and C,. Figure 6 illustrates the be-
ginning of loss of periodicity at » =4.1 which is accom-
panied by a thickening of the phase trajectory and weak
modulation in the time signal (not shown). The loss of
periodicity becomes clearer when r increases further. Fig-
ure 7 shows the quasiperiodic solution at » =4.3. The
phase trajectory tends to fill up a wider bounded region (a
two-dimensional torus) in the (X, Y) plane as depicted in
Fig. 7(a). Additional amplitude modulation is observed,
although weak, as indicated by the power spectrum in
Fig. 7(b). There is a second fundamental frequency
f><f1 with a slight shift in the f, value to the right.
The spectrum shows peaks at the combination frequen-
cies of mf,+nf,(m,n=0,+1,+2,...). At r=4.4, a
third fundamental frequency f; emerges in the power
spectrum in Fig. 8(b) accompanied by a broadening
around f; and f,, thus indicating the onset of weak
chaotic behavior as can be confirmed from the broaden-
ing of the phase trajectory in Fig. 8(a). When r is in-
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-10

~-15
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15

FIG. 4. Solution behavior
close to the Newtonian limit
(De=0.001) and Pr=10. Phase
trajectory in the (X, Y) plane for
r =10, leading to stable convec-
tion (a); » =14, showing a homo-
clinic bifurcation (b); and r =28,
displaying chaotic behavior (c).
This sequence is essentially the
same as the one based on the
Lorenz equations.



390 ROGER E. KHAYAT 51

creased to 4.6, chaotic behavior becomes particularly ob-
vious from the phase portrait in Fig. 9(a). The power
spectrum in Fig. 9(b) shows a significant decrease in am-
plitude and additional broadening at the fundamental fre-
quency f,. The third fundamental frequency f; disap-
pears together with the higher harmonics.

C. Period doubling and chaos (Pr=25, De=0.003)

We have observed earlier (see Fig. 3) that the critical
value of De, for periodic behavior to set in, becomes in-
creasingly smaller as the Prandtl increases. Thus, even

()

supposedly ‘“Newtonian” flows appear bound to exhibit
periodicity in the higher Pr range. While such periodic
behavior is not predicted by the Lorenz equations, the
presence of a relatively small level of fluid elasticity can
account for it. To illustrate this fact, we examine the
flow at Pr=25 and fix the Deborah number to a small
value De=0.003. In this case, the transition to chaos
occurs through a succession of period doubling.

The sequence of period doubling is shown in Figs. 10 to
13 for the range r€&€[45,53] of the Rayleigh number.
Note that in this case, a Hopf bifurcation emerges at
r=ry=38 (see Fig. 2), with initial frequency

3.6 T T T T

(®)

FIG. 5. Periodic solution for
De=0.022, Pr=10, and r =3.9.
Phase trajectory on a single loop
in the (X, Y) plane showing some
distortion (a); and the presence
of one harmonic in the power
spectrum density (b).
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f=w/27=2.48. Figure 10 shows a period-1 solution at
r =45. The phase trajectory in the (X, P) plane is locked
onto a single closed orbit. The slight distortion in the or-
bit and the presence of higher harmonics in the power
spectrum in Fig. 10(b) indicate the presence of weak non-
linearities. The value of the fundamental frequency f in
the power spectrum is 2.25, which is slightly smaller than
the one predicted by linear analysis. As 7 is increased, the
period-1 motion bifurcates into a period-2 motion and ap-
pears as shown in Fig. 11 for r =50. The trajectory in
Fig. 11(a) exhibits two loops, and the power spectrum in

(@)

Fig. 11(b) shows peaks at f/2 and its multiples. The
period-4 motion at r =52 is shown in Fig. 12. As the
Rayleigh number is further increased to r =153, the
period doubling reaches the accumulation point, and
gives way to a chaotic solution as can be seen from Fig.
13. In this case, the trajectory in phase space [Fig. 12(a)]
does not form a closed orbit. It does suggest, however,
that the solution has undergone a large number of period
doubling. The power spectrum shows the 1 subharmonics
and its multiples surrounded by continuous spectral seg-
ments. This confirms that the period-doubling bifurca-

4
3F J
2+ 4
1t :
> 0 -
1k 4
-2 =
_3 - -
-4
-8 8 FIG. 6. Loss of stability of
the limit cycle for De=0.022,
X Pr=10, and r =4.1. Phase tra-
jectory showing an almost
periodic orbit (a); with two har-
® monics in the power spectrum
1 T T T T T T T (b).
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tion is responsible for the gradual spreading of the spec-
trum and the broadening of the trajectory in phase space.
The continuous spectral segments around subharmonic
components imply a transition to chaos in conjunction
with the period-doubling bifurcation. This succession of
period doubling, and the onset of chaos at an accumula-
tion value of a driving parameter, is known as the Feigen-
baum route [26], and has been observed in many experi-
ments [27].

(a)

VI. DISCUSSION AND CONCLUSION

Fluid elasticity constitutes a fundamental characteris-
tic of any fluid and not just polymeric liquids. Some of
the more recent experimental estimates of fluid elasticity
indicate that some of the supposedly “Newtonian” fluids
possess a level of elasticity several orders of magnitude
higher than has previously been believed [9-12]. Molec-
ular [7,28,19] and phenomenological [20] theories suggest

> o
1k
-2 F
_3 -
_4 -
-5 1 1 1 ] ! 1 1
-8 -6 -4 -2 0 2 4 6 8 FIG. 7. Quasiperiodicity for
De=0.022, Pr=10, and r=4.3.
X A wider region is filled up by the
phase trajectory (a). Fourier
spectrum (b) showing two funda-
(b) mental frequencies f;=0.5501
1 . . . ; ; . ; and f,=0.2803 and harmonics.
fy
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that the normal stress coefficient (which is a measure of
elasticity) representing normal stress effects may be
strongly dependent on thermodynamic gradients. In par-
ticular, normal stresses tend to increase with shear rate.
Thus, one should expect that the effect of fluid elasticity
or normal stresses becomes more significant in the transi-
tion and turbulent regimes. In this case, the Navier-
Stokes equations may not constitute a realistic model to
examine chaotic or turbulent flow. If we believe the
inadequacy of the Navier-Stokes equations in the pres-

(a)

ence of large gradients, we immediately face the question
regarding the choice of a suitable constitutive model for
describing turbulent flow.

Kinetic theory has been a major theoretical tool in the
development of constitutive models. Hydrodynamic
equations such as the Navier-Stokes equations are ac-
corded a kinetic theory foundation by the Boltzmann
equation and the Chapman-Enskog solution [28]. Grad’s
moment method leads to a Maxwell type constitutive
equation [5]. It is well established that the first-order

7 FIG. 8. Quasiperiodicity and
weak chaos for De=0.022,

Pr=10, and r =4.4 as confirmed
from the phase trajectory (a).
The Fourier spectrum (b) shows
three fundamental frequencies of
f1=0.5842, f,=0.2938, and
f3=0.1226, and peaks at their
combinations.
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Chapman-Enskog solution leads to constant transport
coefficients, particularly the viscosity, which makes the
Navier-Stokes equations applicable for flows close to
equilibrium. This argument, of course, is not applicable
when a shear rate dependent viscosity is simply imposed
in the momentum equation. Indeed, for flows far from
equilibrium, one is forced to adjust the Navier-Stokes
equations by introducing an effective viscosity, explicitly
through a shear rate dependent viscosity, or implicitly
through a viscoelastic equation for stress. This has been
the route taken for most of the constitutive models to de-

(a)

scribe turbulent flows. More generally, in the macroscop-
ic description of irreversible processes, one aims at ob-
taining a theory completely consistent with the thermo-
dynamic laws, more particularly the second law, since no
irreversible process is possible if it violates the thermo-
dynamic laws. In the modified moment method of solu-
tion for the (generalized) Boltzmann equation for (dense)
dilute fluids [7,8], approximate solutions to the kinetic
equation are obtained in such a way that the H theorem
is satisfied by them. The modified moment method yields
a constitutive equation for stress that generalizes

5 T T T T T T T
4+ 4
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-8 -6 -4 -2 0 2 4 6 8
X FIG. 9. Chaotic motion for
De=0.022, Pr=10, and r =4.6
as confirmed from the phase tra-
(b) jectory (a). The Fourier spec-
. trum (b) shows additional
T ! ! T ' ' ' broadening at f, and frequency
locking.
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Newton’s law of viscosity and Maxwell’s equation. This
equation consists of the usual terms collectively called the
convective terms, and a dissipative term which originates
from the collision term in the (generalized) Boltzmann
equation. The nonlinear collision integral is approximat-
ed using a cumulant expansion method. To first order in
the cumulant approximation, the collision integral yields
dissipative terms in the stress equation which are propor-
tional to a hyperbolic sine function whose argument is
simply the Rayleigh-Onsager dissipation function [1].

(a)

Therefore, the cumulant expansion yields a dissipative
term that amounts to a partial resummation of infinite
Chapman-Enskog series for the collision term in the (gen-
eralized) Boltzmann equation. The resulting transport
coefficients (of viscosity and normal stress) are highly
nonlinear and strongly dependent on shear rate. One
can, however, show that for the weakly nonlinear flow
(weak dependence of transport coefficients on shear rate),
the generalized hydrodynamic equation for stress reduces
to the (upper-convected) Maxwell equation. It is precise-
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De=0.003, Pr=25, and r =45.
X Phase trajectory in the (X,P)
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Fourier spectrum (b) showing
) fundamental frequency f and
harmonics.
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ly for this reason that we have limited the present investi-
gation to the weakly nonlinear transition flow of a
Maxwellian fluid.

The use of the UCM equation to examine the onset of
chaotic motion will set the foundation and tone for a
more thorough investigation using the more realistic con-
stitutive models. Such models, whether molecular based
or phenomenological, must account for the nonlinear
dependence of viscosity and normal stress coefficients on
shear rate as argued above. Despite its limited validity,

()

75 T T T T T T

the UCM equation gives rise to important qualitative
flow phenomena not predicted by the Navier-Stokes
equations. The emergence of quasiperiodicity and period
doubling are just manifestations of how altered the road
to chaotic motion can be when viscoelastic effects are ac-
counted for. More importantly, such scenarios are exper-
imentally observed and cannot be recovered through the
Navier-Stokes equations. Furthermore, based on the nu-
merical results in the present study, even the presence of
minute elastic effects in the constitutive equation appears
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5 10 15 FIG. 11. Periodic-2 motion
for De=0.003, Pr=25, and
r=50. Phase trajectory in the
(X, P) plane (a); and correspond-
ing Fourier spectrum (b) show-
ing fundamental frequencies f,
f 72, and harmonics.
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to lead, at least qualitatively, to a more accurate theoreti-
cal prediction. Such a closer agreement between theory
and experiment should be expected when viscoelastic
effects are accounted for, as we next argue, even when
only supposedly ‘“Newtonian” fluids are involved.

First, we observe that a viscoelastic equation for stress
does change the type of the system of equations describ-
ing the whole flow field. The change from parabolic to
hyperbolic type when the Maxwell equation is used [29] is
of far reaching consequence on the flow, particularly dur-
ing transition. Experimental evidence strongly suggests

(@)

397

the presence of a characteristic behavior common to the
better understood routes to chaotic motion, namely,
periodic behavior. It is sufficient to just examine the
three most common scenarios involving intermittent
behavior, quasiperiodicity, and period doubling, to see
that chaotic motion usually sets in after the flow has un-
dergone periodic behavior. This seems to indicate that
the flow in the transition regime exhibits periodic motion
that cannot be recovered by the (parabolic or diffusive)
Navier-Stokes equations suggested. Therefore, the
discrepancy between the solution to the Lorenz equations
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5 10 13 FIG. 12. Period-4 motion for

De=0.003, Pr=25, and r =50.
Phase trajectory in the (X,P)
plane (a); and corresponding
Fourier spectrum (b) showing
fundamental frequencies f, /2,
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(27) and experiment is most likely not due exclusively to
the level of truncation in the (Fourier) representation of
the solution, but to the very diffusive character of the
Navier-Stokes equations at the outset. Second, even for
low molecular weight fluids which possess a relatively
small relaxation time, one cannot ignore viscoelastic
effects and simply set De=0 in the viscoelastic equations
to recover the Lorenz solution from Egs. (22)-(25), be-
cause the latter equations are singular in the limit De—0.
A similar argument holds for the Maxwell and Navier-
Stokes equations. This seemingly purely mathematical

(a)

fact is of great physical consequence. Indeed, additional
calculations based on Egs. (22)-(25) show that similar
spatiotemporal structures and stability pictures to the
ones reported in Sec. V are obtained when the Deborah
number is set very small but not zero, except that in this
case, the corresponding critical values of the Rayleigh
number or the Prandtl number for onset of periodic
motion must be higher the smaller De is (see Fig. 2).
Third, we come to an interesting point. The severity of
truncation in the Fourier representation (17)—(21) has
made it such that the nonlinear convective terms in Eq.

80 T T T T T
75 | .
70 b 4
65 | E
60 J
55 |- s
50 + :
45 + E
40 + .
35 + i
30 + .
FIG. 13. Chaotic motion for
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(5) did not survive in the final Egs. (22)-(25). Thus, the
nonlinearities in the viscoelastic equations stem from the
convective terms in the energy equation, and are the
same as those in the Lorenz equations (27). We may as
well have started then with a linear Maxwell equation for
stress, and the results would not have changed. What is
interesting to observe is the fact that the major distinc-
tion between the Lorenz and viscoelastic flows is of non-
linear nature: quasiperiodicity and period doubling. This
is a rather intriguing fact, that new nonlinear phenomena
have been brought into existence by the presence of an
additional linear equation, namely, Eq. (25). Whether the
presence of nonlinear terms in a more realistic constitu-
tive equation will play a dominantly significant role on
the spatiotemporal behavior remains an open issue. For
one, the steady-state solution(s) will be altered because of
additional nonlinearities.

In conclusion, we have examined in the present study
the influence of fluid elasticity or normal stress on the
destabilization of steady convection and onset of chaotic
behavior for weakly elastic flows. The four-dimensional
truncated model embedding Maxwell equation for stress
constitutes a generalization of the Lorenz model for
Newtonian fluids. It is found that for a small but non-
vanishing Deborah number De, a Hopf bifurcation sets in
at a Rayleigh number which generally tends to decrease
with De. Thus, elasticity appears to have a destabilizing
effect (see also Ref. [30]). This is not always the case,
however, in the moderately high Prandtl range. A
multiple-scales perturbation analysis is carried out

around the onset of the Hopf bifurcation to determine the
stability of the resulting periodic orbit. The limit cycle
was found to be generally stable except when the De-
borah number is very small (also in the limit of the
Lorenz equations). It is clear, however, form the numeri-
cal values of De that practically all fluids are predicted to
display periodic behavior, a fact not reflected when elasti-
city is entirely neglected. The value of the Prandtl num-
ber was found to be a determining factor in the manner
transition to chaotic behavior occurs. Chaotic motion
was shown to set in via quasiperiodicity and periodic
doubling.

Whether low molecular weight of supposedly Newtoni-
an fluids in practice exhibit viscoelastic effects in the
transition regime can only be confirmed through direct
comparison with experiment. The present formulation
and numerical calculations can only bring out qualitative-
ly some of the fundamental and nonlinear character in-
herent to any fluid subject to high shear flow. In this
respect, the present results seem to indicate that some of
the routes to chaos observed in the thermal convection of
“Newtonian” fluids, in particular the quasiperiodicity
and period-doubling scenarios, can be recovered if elastic
or normal stress effects are accounted for. A more
thorough and realistic formulation must account for la-
teral boundaries, incorporate stick and not slip conditions
at the walls, include many more modes in the Fourier
representation of solution, and use a more accurate con-
stitutive model including shear thinning.
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